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1. Introduction and Motivation

Many emerging applications are built upon large, un-
structured datasets that exhibit highly irregular (or even
nearly random) memory access patterns. Examples include
informatics applications, and other problems that are often
represented by unstructured graph-based data structures. It
is well known that these applications are challenging for
conventional architectures to execute (either serially or in
parallel). The Depth First Search (DFS) benchmark pro-
posed in this work uses the Boost Graph Library to perform
a depth-first search on a large power-law graph, represent-
ing “small world” phenomena. The graph in question ex-
hibits a small average distance between any two vertices,
a small diameter, and has a few high-degree vertices with
a large number of low-degree vertices. Graphs such as this
appear in many fields, including networking, biology, social
networks, and data mining. Many of these applications are
of critical importance to researchers, and the challenge of
executing them on conventional machines increases as the
graph size grows.

The benchmark proposed in this work is used as the basis
for many fundamental algorithms in graph theory, is critical
to several emerging applications, is memory intensive, and
exhibits poor performance on conventional machines. Sec-
tion 2 quantitatively demonstrates the memory characteris-
tics of the benchmark in an architecture independent fash-
ion, showing that it is extremely memory intensive. Section
3 describes the execution phases of the benchmark. And
Section 4 presents the conclusions.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

2. Unique Characteristics of the Benchmark

The von Neumann bottleneck dictates that application
performance will be primarily defined by the performance
of the memory system. In fact, the increasing relative mem-
ory access time, or memory wall[5] proves especially chal-
lenging for applications that do not exhibit cache-friendly
behavior. Typically this behavior can be described by the
application’s temporal locality, or propensity to reuse data
from memory over time, and its spatial locality, or use of
data in memory “near” data that has already been used. This
work further characterizes the application’s behavior by its
data intensiveness, or the total amount of unique data con-
sumed by the application. Formally, the measurements pre-
sented in this work are defined as:

1. Temporal Locality: the miss rate of a fully associative
64-kb (L1 size) cache with 4-byte (machine word size)
blocks. This was measured over a 1 billion instruction
interval of the program’s inner loop.

2. Spatial Locality: the average fraction of a 64-byte
cache line that is used over a 1,000 instruction window
in the same 1 billion instruction interval.

3. Data Intensiveness: the total number of unique bytes
consumed in the same 1 billion instruction interval.

A further description of the measurements and method-
ology, as well as a wider range of data points can be found
in [3, 2].

Figure 1 shows the memory characteristics described
above. The graph depicts temporal vs. spatial locality, with
the relative area of the dots representing relative data inten-
siveness. The search in this work is shown in comparison to
several key benchmarks:

1. LINPACK: the Supercomputer benchmark used to
generate the Top 500 supercomputer list.



Figure 1. Benchmark Temporal Locality, Spatial Locality, and Data Intensiveness.

2. SPEC CPU 2000: represented by SPEC FP, the float-
ing point suite describing primarily scientific work-
loads, and the SPEC Int integer suite that is represen-
tative of workstation workloads. This has long been
the primary suite studied by computer architects[1].

3. Sandia FP: a suite of real scientific applications
run at supercomputer scale at Sandia National
Laboratories[2].

4. Sandia Int: a set of emerging integer applications for
supercomputer-scale problems, including codes in the
graph theory, biology, and discrete math[2].

5. GUPS: the Giga-Updates Per Second benchmark (or
the RandomAccess HPC Challenge Benchmark) that
continuously updates a random location in a large
memory array.

The DFS benchmark proposed here exhibits very low
spatial and temporal locality, as well as a relatively large
data set. In comparison to GUPS, which is artificially con-
structed to exhibit the lowest spatial and temporal locality,
and greatest data intensiveness, DFS exhibits 1.75 times the
temporal locality, 4.4 times the spatial locality, and only
19% the data set size. However, the DFS benchmark repre-
sents a fundamental application in graph theory, and, unlike

GUPS, it can be optimized algorithmically for a particular
architecture. DFS exhibits significantly less temporal local-
ity than any other real application. The next closest is the
Sandia Integer suite, which has nearly 20 times the temporal
locality. Both integer suites have less spatial locality (47%
less for the Sandia suite and 13% less for the SPEC). The
floating point suites exhibit significantly higher spatial and
temporal locality than does DFS.

The most surprising measure, however, is data inten-
siveness. DFS exhibits only 19% the data intensiveness of
GUPS, but 1.86 times that of SPEC FP, and over 5 times
that of the SPEC integer suite. The real applications in the
Sandia suite are more data intensive than DFS (41% more
for the floating point suite and 16% more for the integer).

The most surprising comparison is between DFS and
LINPACK, the most prevalent benchmark for supercomput-
ing. LINPACK exhibits nearly 38 times the temporal local-
ity, and over 1.8 times the spatial locality. The data inten-
siveness, however, is most shocking. DFS consumes nearly
6, 900 times the amount of unique data as compared to LIN-
PACK.

Because the DFS application exhibits a nearly 100%
temporal miss rate, and consumes (on average) two unique
machine words out of each cache line, cache-based archi-



tectures will exhibit low efficiency in the execution of the
benchmark.

Classical benchmarks (LINPACK and the SPEC suite)
are the most dissimilar to the proposed DFS benchmark.
LINPACK’s unique data set is so small in comparison to
the DFS code that the dot representing it is almost impossi-
ble to see. The SPEC suite, particularly SPEC Int, are also
very small by comparison. And each of the three exhibits
significantly higher spatial and temporal locality. SPEC Int
is the closest conventional benchmark to the proposed code,
and has nearly twice the temporal locality and nearly three
times the spatial locality.

3. DFS Benchmark Execution

The DFS benchmark first constructs a graph of 4 mil-
lion vertices using the Power Law Out Degree (PLOD)
algorithm[4] available in the Boost Graph Library. On a typ-
ical workstation, the graph consumes between 250 and 500
MB. While the generation of the graph may prove an inter-
esting benchmark on its own, the core of the DFS bench-
mark is to perform a Depth First Search on the generated
graph. This is repeated several times for timing.

4. Conclusions

The benchmark described in this paper represents an
emerging class of applications based on large, unstruc-
tured graphs. These codes are unique for the high perfor-
mance computing community in that they are significantly
more data intensive than traditional scientific applications
(that are already considered data intensive). This paper
has quantitatively demonstrated the difference between the
DFS benchmark and several other application suites, includ-
ing the ubiquitous SPEC, in an architecture independent
fashion. The results show that the benchmark is unique
compared to other real high performance computing ap-
plications, as well as the predominant conventional bench-
mark suites. Clearly the analysis of large graphs provides a
unique challenge to conventional architectures. The bench-
mark is important because of its emerging use within in-
formatics and uniquely challenging memory properties. It
can serve as a real application that fills the critical memory
intensive component of a benchmark suite.
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